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Abstract. A finite new algorithm is proposed for clusteringm given points in n-dimensional real
space intok clusters by generatingk planes that constitute a local solution to the nonconvex problem
of minimizing the sum of squares of the 2-norm distances between each point and anearestplane.
The key to the algorithm lies in a formulation that generates a plane inn-dimensional space that
minimizes the sum of the squares of the 2-norm distances to each ofm1 given points in the space.
The plane is generated by an eigenvector corresponding to a smallest eigenvalue of ann× n simple
matrix derived from them1 points. The algorithm was tested on the publicly available Wisconsin
Breast Prognosis Cancer database to generate well separated patient survival curves. In contrast, the
k-mean algorithm did not generate such well-separated survival curves.
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1. Introduction

There are many approaches to clustering such as statistical [2, 6, 9], machine
learning [7, 8] and mathematical programming [4, 15, 16]. In this work we take
a mathematical programming approach with a novel idea. Instead of generating
cluster centers as points that minimize the sum of squares of distances of each
given point to a nearest cluster center, we change the entity of the center from
being a point to that of being a plane. The justification for this approach is that data
sometimes naturally falls into clusters grouped around flat surfaces such as planes.
This approach yields interesting theoretical results that lead to an efficiently im-
plementable algorithm which gives better computational results than the standard
k-mean algorithm [1] on a publicly available dataset.

We outline the contents of the paper now. In Section 2 we formulate thek-
plane clustering problem and state thek-plane clustering algorithm. In Section
3 we derive the theoretical results needed to justify the algorithm and establish
its finite termination at a locally optimal solution. In Section 4 we describe our
computational results. Section 5 concludes the paper.

Throughout this paper,e will denote a vector of ones of appropriate dimension
and a prime will denote the transpose.
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2. Thek-Plane Clustering (kPC) Algorithm

We consider a setA of m points in then-dimensional real spaceRn represented
by the matrixA ∈ Rm×n. We wish to clusterA into k clusters according to the
following nonconvex minimization problem. Determinek cluster planesin Rn:

P` := {x | x ∈ Rn, x′w` = γ`}, ` = 1, . . . , k, (1)

that minimize the sum of the squares of distances of each point ofA to anearest
planeP`. The algorithm is similar to thek-mean [1] andk-median [4] algorithms
in that it alternates between assigning points to a nearest cluster plane (Cluster
Assignment) and, for a given cluster, computing a cluster plane that minimizes the
sum of the squares of distances to all points in the cluster (Cluster Update). It is
the latter computation, which is a one step replacement of an algorithm for the
Euclidean Regression Problem [5, 17] which does not use squared distances, that
makes the following kPC algorithm possible.

ALGORITHM 1. kPC: k-Plane Clustering Algorithm. Start with random
(w0
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0
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0
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k ) at iteration j with ‖wji ‖2 = 1, i = 1, . . . , k, compute
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1 , γ
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1 ), . . . , (w

j+1
k , γ

j+1
k ) by the following two steps:

(a) Cluster Assignment: (Assign each point to closest planeP`) For each
Ai, i = 1, . . . m, determinè (i) such that

|Aiwj`(i) − γ j`(i)| = min
`=1,... ,k

|Aiwj` − γ j` |.

(b) Cluster Update: (Find a planeP` that minimizes the sum of the squares
of distances to each point in cluster̀ ) For ` = 1, . . . , k let A(`) be the
m(`)×nmatrix with rows corresponding to allAi assigned to cluster̀. Define

B(`) := [A(`)]′(I − ee′

m(`)
)A(`). Setwj+1

` to be an eigenvector ofB(`) cor-

responding to the smallest eigenvalue ofB(`). Setγ j+1
` := e′A(`)wj+1

`

m(`)
.

Stop whenever there is a repeated overall assignment of points to cluster planes or
a nondecrease in the overall objective function.

We give in the next section the theoretical justification for the kPC algorithm
and establish its finite termination.

3. Theoretical Justification of kPC Algorithm

We first note that the cluster assignment rule defined in Step (a) of the kPC Al-
gorithm 1 follows from the well known fact [12] that the 2-norm distance between a
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pointAi ∈ Rn and the planeP` := {x | x ∈ Rn, x′w` = γ`} is |Aiw`−γ`|/‖w`‖2 =
|Aiw` − γ`|. The last equality follows from‖w`‖2 = 1.

The cluster update rule defined in Step (b) of the kPC Algorithm 1 follows from
Theorem 5 below. But first we prove a few simple lemmas.

LEMMA 1. LetA ∈ Rm×n. Then,〈
Aw − eγ = 0, w 6= 0
has no solution(w, γ )

〉
⇔
〈

rank(A) = n, and
Aw = e has no solutionw

〉
. (2)

Proof. (⇒) If rank(A) < n, thenAw − e · 0 = 0, w 6= 0 has a solution which
is a contradiction. IfAw = e has a solution, thenAw − e(1) = 0, w 6= 0 has a
solution which is again a contradiction.

(⇐) If Aw − eγ = 0, w 6= 0 has a solution, then eitherγ = 0 or γ 6= 0. In
the first case,rank(A) < n. In the second case, by dividing byγ , we have that
Aw = e has a solution. In either case, a contradiction ensues. 2
LEMMA 2. LetA ∈ Rm×n, then
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2
LEMMA 3. B := A′

(
I − ee

′

m

)
A is positive semidefinite.

Proof.By Lemma 2,

w′Bw =
∥∥∥∥(I − ee′m

)
Aw

∥∥∥∥2

2

> 0. (5)

2
LEMMA 4. Aw − eγ = 0, w 6= 0 has no solution⇔ B is positive definite.

Proof. (⇒) By Lemma 3,B is positive semidefinite. IfB is notpositive definite
then, by Lemma 3,(I − ee′

m
)Aw = 0, w 6= 0 has a solution. But, by Lemma 1,

rank(A) = n, hencez = Aw 6= 0. Thus,(I − ee′
m
)z = 0, orz = e e′z

m
= αe, where

α = e′z
m

. Sincez 6= 0, it follows thatα 6= 0 and e= z
α
= Aw

α
, contradicting the

fact (from Lemma 1) thatAw = e has no solution.
(⇐) If B is positive definite, then by Lemma 3,(I− ee′

m
)Aw = 0 has no solution

w 6= 0. Hence rank(A)= n. Also Aw = e has no solution, else(I − ee′
m
)Aw =

e − e = 0. Thus by Lemma 1,Aw − eγ = 0, w 6= 0, has no solution. 2
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We are ready now to state the theorem that explicitly gives the plane that min-
imizes the sum of the squares of the 2-norm distances tom given points inRn.

THEOREM 5. LetA ∈ Rm×n. Then a global solution of:

minimize
(w,γ )∈Rn+1

‖Aw − eγ ‖22
subject to w′w = 1,

(6)

is attained at any eigenvectorw ofB := A′(I − ee′
m
)A corresponding to a minimum

eigenvalue ofB andγ = e′Aw
m

. The minimum of (6) is positive if and only ifB is
positive definite or equivalently if and only ifrank(A) = n andAw = e has no
solution.

Proof. The second part follows from Lemmas 1 and 4. We now prove the first
part. The set of all stationary points of (6) including all its global minima render
the partial derivatives of the Lagrangian of (6) equal to zero. That is for:

L(w, γ, λ) := ‖Aw − eγ ‖22− λ(w′w − 1), (7)

it follows that:

1

2
∇wL(w, γ, λ) = A′(Aw − eγ )− λw = 0, (8)

−1

2
∇γL(w, γ, λ) = e′(Aw − eγ ) = 0, (9)

−∇λL(w, γ, λ) = w′w − 1= 0. (10)

Hence:

λ = w′A′
(
I − ee

′

m

)
Aw, (11)

γ = e′Aw
m

. (12)

Substitution forλ andγ in (8) gives:

A′
(
I − ee

′

m

)
Aw − w′A′

(
I − ee

′

m

)
Aw ·w = 0. (13)

By using the definition ofB this is equivalent to:

Bw − w′Bw · w = 0.
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That is:

Bw = νw, ν = w′Bw. (14)

Thus for each stationary point(w, γ ) of (6), it follows thatw is an eigenvector
of B andγ = e′Aw

m
. Hence,

Aw − eγ = Aw − e
(
e′Aw
m

)
=
(
I − ee

′

m

)
Aw. (15)

We then have by Lemma 2 that:

‖Aw − eγ ‖22 = w′A′
(
I − ee

′

m

)2

Aw = w′Bw = ν, (16)

where the last equality follows from (14). Hence the smallest value thatν can take
on is the smallest eigenvalue ofB andw is its corresponding eigenvector. 2
REMARK 6. Relation to Singular Value Decomposition.It can be shown, after
some straightforward algebra, that thew obtained in the above Theorem 5 can also
be obtained by taking a singular value decompositionUSV ′ [14, 19] of them× n
matrix:

H :=
(
I − ee

′

m

)
A,

whereU andV are orthogonal matrices of dimensionsm×m andn×n respectively,
andS is anm×n diagonal matrix with nonnegative diagonal elements in decreasing
order. It can then be shown that the desiredw given by Theorem 5 corresponds to
the last column of the matrixV corresponding to a smallest singular value ofH ,
andγ is again given by (12) above. This result can be derived by noting that [14,
Theorem 8.19] the squares of the singular values ofH (possibly with some zeros
added) are also the eigenvalues of bothHH ′ andH ′H with associated eigenvectors
being columns ofU andV respectively. A different clustering approach, latent
semantic indexing, is given in [3] that also uses singular value decomposition.

We end this section by establishing the finiteness of the kPC Algorithm.

THEOREM 7. (Finite Termination of the kPC Algorithm 1).The kPC Algorithm
1 terminates in a finite number of steps at a cluster assignment that is locally
optimal. That is, the overall objective, the sum of the squares of distances of each
point to a closest cluster plane, cannot be decreased by either reassignment of a
point to a different cluster plane, or by defining a new cluster plane for any of the
clusters.
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Proof. In the cluster assignment part (a) of the algorithm each point is assigned
to a closest plane and hence the overall objective cannot increase. Similarly in
part (b) of the algorithm, the cluster plane, for each cluster, is recomputed as that
plane which minimizes the sum of the squares of distances of points in that cluster
to the plane. Hence, again, the overall objective cannot increase. Since there are
a finite number of ways that them points of A can be assigned tok clusters,
since the algorithm does not permit repeated assignments by the explicit choice
of the stopping criterion of part (b) of the algorithm, and since the overall objective
function is non-increasing and bounded below by zero, it follows that the algorithm
must terminate at some clustering assignment that is locally optimal. 2

4. Computational Results

Two sets of computational tests were carried out comparing the kPC andk-mean
algorithms. In the first set of tests the ability to generate well separated survival
curves by clustering medical data was tested. In the second set of tests the ability
to recover class labels by clustering unlabeled data was tested.

In the first set of tests the kPC algorithm was tested on the Wisconsin Prognostic
Breast Cancer (WPBC) Database [13] along with thek-mean algorithm [1] using
only two features: tumor size and lymph node status. These two features were
normalized to have zero mean and standard deviation 1. This dataset consists of
198 points inR2. The number of clusters was set to 3 (k = 3) in an attempt to find
3 groups of patients with distinct survival characteristics (see Figure 2).

Kaplan-Meier survival curves [10, 11] were constructed for each cluster, repres-
enting expected percent of surviving patients as a function of time, for patients in
that cluster. Figure 1 depicts the three planes (lines inR2) obtained by the kPC Al-
gorithm 1. Figure 2 gives survival curves for the three clusters obtained by the kPC
Algorithm 1 and thek-mean algorithm. We note that the survival curves obtained
by the kPC Algorithm are well separated and hence can be used as a prognostic
tool, whereas those obtained by thek-mean algorithm are not well separated and
hence cannot be used as prognostic indicators.

In the second set of tests the kPC Algorithm and thek-mean algorithm were
further compared in their ability to recover class labels on a holdout data subset.
The datasets used here had two classes, hencek = 2 in these tests. A ten-fold cross-
validation [18] scheme was employed. In this procedure the dataset is randomly
divided into 10 disjoint sets of approximately equal size,T1, T2, . . . , T10. Then 10
trials are conducted. At trialj , the clustering algorithms are applied to the union of
T1, . . . , Tj−1, Tj+1, . . . , T10 (training data) without making use of the class label
for each point. Then the data points inTj (test data) were assigned to the closest
cluster plane or cluster center. Training correctness at trialj is the percentage of
training dataT1, T2, . . . , Tj−1, Tj+1, . . . , T10 correctly classified by the majority
label of the cluster that each point was assigned to. Similarly, testing correctness
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Figure 1. Three cluster lines obtained by the kPC Algorithm for the Wisconsin Prognostic
Breast Cancer Database (WPBC). Data assigned to Plane 1 is indicated by©. Data assigned
to Plane 2 is indicated by+. Data assigned to Plane 3 is indicated by3.

at trial j is the percentage ofTj correctly classified by the majority label of the
cluster that the point was assigned to.

Table 1 summarizes average training and testing results on 2 publicly available
datasets [13]. The Johns Hopkins Ionosphere dataset consists of 351 data points
with 34 real-valued features characterizing radar returns from the ionosphere. One
class corresponds to radar returns showing evidence of structure. The other class
corresponds to those returns showing no structure. The BUPA Liver Disorders
dataset consists of 345 data points with 6 real-valued features. A 7th feature in-
dicates the class of the corresponding feature. Both the Ionosphere and BUPA
datasets have been normalized so that the mean of each feature is zero and standard
deviation is one.

We note that the kPC clusters were better able to recover original class labels
on the BUPA liver disorders dataset over both the training and testing subsets. The
k-mean clusters were better on the Ionosphere dataset. On both the BUPA and
Ionosphere datasets, the kPC algorithm converged faster thank-mean, as much as
6.21 times faster on the BUPA dataset.
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Figure 2. Survival curves for the 3 clusters obtained by kPC andk-Mean Algorithms



K-PLANE CLUSTERING 31

Table 1. 10-fold Cross-Validation Results

Ionosphere BUPA

Ave. Test kPC 0.6411 0.6503

Correct. k-Mean 0.7060 0.5564

Ave. Train kPC 0.6410 0.6488

Correct. k-Mean 0.7091 0.5485

Ave. Time kPC 0.55 0.64

(sec.) k-Mean 2.49 3.98

Ave. # of kPC 1.0 7.8

Iterations k-Mean 5.6 11.7

5. Conclusion

We have proposed a new clustering algorithm based on minimizing the sum of the
squared distances of points to a closest cluster plane instead of the conventional
closest cluster center that is used in thek-mean algorithm. Clustering around such
planes appears to have advantages over clustering around points. One such advant-
age is well separated survival curves for prognostic data. Other possible advantages
include the ability to cluster points that naturally fall into a subspace of the original
data space and hence may be better approximated by a plane.
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